Evolutionary inheritance of elemental stoichiometry in phytoplankton.
نویسندگان
چکیده
The elemental composition of phytoplankton is a fusion of the evolutionary history of the host and plastid, resulting in differences in genetic constraints and selection pressures associated with environmental conditions. The evolutionary inheritance hypothesis predicts similarities in elemental composition within related taxonomic lineages of phytoplankton. To test this hypothesis, we measured the elemental composition (C, N, P, S, K, Mg, Ca, Sr, Fe, Mn, Zn, Cu, Co, Cd and Mo) of 14 phytoplankton species and combined these with published data from 15 more species from both marine and freshwater environments grown under nutrient-replete conditions. The largest differences in the elemental profiles of the species distinguish between the prokaryotic Cyanophyta and primary endosymbiotic events that resulted in the green and red plastid lineages. Smaller differences in trace element stoichiometry within the red and green plastid lineages are consistent with changes in trace elemental stoichiometry owing to the processes associated with secondary endosymbioses and inheritance by descent with modification.
منابع مشابه
Allometry and stoichiometry of unicellular, colonial and multicellular phytoplankton.
Phytoplankton life forms, including unicells, colonies, pseudocolonies, and multicellular organisms, span a huge size range. The smallest unicells are less than 1 microm3 (e.g. cyanobacteria), while large unicellular diatoms may attain 10(9) microm3, being visible to the naked eye. Phytoplankton includes chemo-organotrophic unicells, colonies and multicellular organisms that depend on symbionts...
متن کاملStoichiometric regulation of phytoplankton toxins.
Ecological Stoichiometry theory predicts that the production, elemental structure and cellular content of biomolecules should depend on the relative availability of resources and the elemental composition of their producer organism. We review the extent to which carbon- and nitrogen-rich phytoplankton toxins are regulated by nutrient limitation and cellular stoichiometry. Consistent with theory...
متن کاملOn relating physical limits to the carbon: nitrogen ratio of unicellular algae and benthic plants
Unicellular algae such as phytoplankton and benthic microalgae have an elemental ratio of carbon to nitrogen to phosphorus (C/N/P) of approximately 106:16:1, known as the Redfield ratio. Benthic plants, including benthic macroalgae and seagrass, have a significantly different and more variable C/N/P ratio, with a median of 550:30:1, herein called the Atkinson ratio. In this paper, the implicati...
متن کاملA model for variable phytoplankton stoichiometry based on cell protein regulation
The elemental ratios of marine phytoplankton emerge from complex interactions between the biotic and abiotic components of the ocean, and reflect the plastic response of individuals to changes in their environment. The stoichiometry of phytoplankton is, thus, dynamic and dependent on the physiological state of the cell. We present a theoretical model for the dynamics of the carbon, nitrogen and...
متن کاملInteractions between Thermal Acclimation, Growth Rate, and Phylogeny Influence Prochlorococcus Elemental Stoichiometry
Variability in plankton elemental requirements can be important for global ocean biogeochemistry but we currently have a limited understanding of how ocean temperature influences the plankton C/N/P ratio. Multiple studies have put forward a 'translation-compensation' hypothesis to describe the positive relationship between temperature and plankton N/P or C/P as cells should have lower demand fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings. Biological sciences
دوره 278 1705 شماره
صفحات -
تاریخ انتشار 2011